Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability.

نویسندگان

  • Alexander D Jacobs
  • Feng-Ming James Chang
  • Lindsay Morrison
  • Jonathan M Dilger
  • Vicki H Wysocki
  • David E Clemmer
  • David P Giedroc
چکیده

The cooperativity of ligand binding is central to biological regulation and new approaches are needed to quantify these allosteric relationships. Herein, we exploit a suite of mass spectrometry (MS) experiments to provide novel insights into homotropic Cu-binding cooperativity, gas-phase stabilities and conformational ensembles of the D2 -symmetric, homotetrameric copper-sensitive operon repressor (CsoR) as a function of Cu(I) ligation state. Cu(I) binding is overall positively cooperative, but is characterized by distinct ligation state-specific cooperativities. Structural transitions occur upon binding the first and fourth Cu(I) , with the latter occurring with significantly higher cooperativity than previous steps; this results in the formation of a holo-tetramer that is markedly more resistant than apo-, and partially ligated CsoR tetramers toward surface-induced dissociation (SID).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NpgRJ_NCHEMBIO_844 60..68

Copper is an essential element that becomes highly cytotoxic when concentrations exceed the capacity of cells to sequester the ion. Here, we identify a new copper-specific repressor (CsoR) of a copper-sensitive operon (cso) in Mycobacterium tuberculosis (Mtb) that is representative of a large, previously uncharacterized family of proteins (DUF156). Electronic and X-ray absorption spectroscopies...

متن کامل

Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of ope...

متن کامل

Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance

Random mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon re...

متن کامل

Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport ...

متن کامل

Metal specificity of cyanobacterial nickel-responsive repressor InrS: cells maintain zinc and copper below the detection threshold for InrS

InrS is a Ni(II)-responsive, CsoR/RcnR-like, DNA-binding transcriptional repressor of the nrsD gene, but the Ni(II) co-ordination sphere of InrS is unlike Ni(II)-RcnR. We show that copper and Zn(II) also bind tightly to InrS and in vitro these ions also impair InrS binding to the nrsD operator-promoter. InrS does not respond to Zn(II) (or copper) in vivo after 48 h, when Zn(II) sensor ZiaR resp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Angewandte Chemie

دوره 54 43  شماره 

صفحات  -

تاریخ انتشار 2015